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Quantization of the moment map of coupled harmonic 
oscillators 
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t Central Laboratory of Biophysics, Bulgarian Academy of Science, B1.21. 1113 Sofia, 
Bulgaria 
t Faculty of Math. and Inf.. Sofia University, 1126 Sofia. Bulgaria 

Received 21 December 1992 

Abstract We quantize the components of the momen" map of t o m  actions on some 
symplectic manifolds. These components may be understood as the~Hamiltonians of commuting 
harmonic oscillators. With suitable choice of phase spaces this yields an interesting version 
of the Borel-Weil-BoU theorem interpreted as a result in geometric quantization. The bresent 
approach sheds some light on this phenomenon. which has been widely discussed from somewhat 
different points of view. In this paper we treat in full detail only a model example-the group 
SU(3)  because it contains almost all elements of the genenl case of compact Lie groups. 

In almost all classical physically significant problems the phase spaces of Hamiltonian 
mechanics are cotangent bundles of manifolds with canonical symplectic structure [14]. 
The other source of symplectic manifolds in science.is algebraic geometry which gives a lot 
of deep  information^ about (compact) algebraic manifolds-the symplectic structure there 
is given by the Kahler form. The connection between these has been exploited over the 
last two centuries through the procedure which is now called reduction. Starting with the 
work of Jacobi (and implicitly by Kepler, Newton and Euler before him) this method has 
produced the most beautiful solutions of physical problems in terms of algebra-geometric 
entities as @-functions etc. 

One of the purposes of the present paper is to discuss the process of reduction from non- 
compact to compact (algebraic) phase spaces as a method for quantization, which we think 
is the basic fact of the geometric quantization scheme (see also [5] for a very interesting 
discussion of this subject). Compact complex (specially algebraic) manifolds involve a lot 
of discrete characteristics starting from continuous background. ' A further purpose of the 
paper is to show how naturally these spaces appear in classical mechanics, and how the 
quantum-mechanical picture arises when geometric quantization is applied to them. We are 
treating hzre the simple case of a phase space with a free symplectic action of a torus. 
The corresponding momentum map is a collection of commuting (in the Poisson sense) 
Hamiltonians (conservation laws). However simple this picture might be, a special case of 
it is the whole representation theory of semisimple Lie groups and the theory of universal 
spaces for vector bundles. These arise in our context as simultaneous quantization of a 
collection of coupled harmonic oscillators. 

, ,  

First we introduce some convenient notation for our case; 

(t, 7) = (61.62, t3 ,  I I I . I I L  v3) c c3 x c3 = 03 - . ' 

M = ( (6 ,  7) E @6\(01 : 6II = 6171 + 62vz + t 3 7 3  = 0) (1) 
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(7.) 
1 

s2 = -(de A dg +dq A df)lM. 
2 

Further we denote by K the torus U(1) x U(1), i.e, 

K = {(A], A*) E c2: p.11 = ]A21 = 1). 

There is a symplectic action of K on ( M ,  n) 

@ : K x M + M  

defined by 

@P((J.l, A2), (6,111) = (Alt,h.211). (3) 

This action is in fact the flow generated on M by the harmonic oscillator Hamiltonians 

J i ( ~ , q ) = h h + ~ 2 Z h + ~ 3 ~ 3 = I ~ 1 2  

and 

JzQ. II) = ~ 1 %  + 11202 f 11303 = 1 ~ 1 ~  

which define, respectively 

( 6 , ~ )  + ( h e ,  II) = (ei%, v) and (E', ill + (e, A Z V )  = (6 ,  e%). 

A different way to state the above is to say that the map: 

J : M + k* R2 J E T  II) = (JiE. v ) ,  J z E ,  7)) (4) 

is the momentum mapping of the action (3) (here k' is the Lie coalgebra of K ) .  We note 
specially that the action (3) of K is free on the symplectic submanifold i@ c M, where 

A? = {(e, II) E M: le1 > 0,1111 =- 0) (5) 

while on the symplectic submanifolds 

M] = {(e,  11) E M: = 0) = c3\{0] 

M~ = {(t, E M: it1 = 0) z c3\\10) 

it degenerates to obvious symplectic free U(1) actions. Obviously M is the disjoint union 
of M I ,  Mz and M. On the symplectic manifolds M1 and M2 we have two regular harmonic 
oscillators. In the spirt of Hertz' force-free mechanics their effective coupling is turned on 
in M via the constraint. 

Now we are going to 'geometrically' quantize the momentum mapping J: M -+ k*. 
In general, the Marsden-Weinstein reduction theorem 161 gives us, for every regular value 
p E k* with isotropy subgroup K,, an orbit manifold 

0, = J - ' ( p ) / K f l  
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which is symplectic with symplectic form Qg determined by the formula 

1;" = xp,. (6) 

where L~ : J- ' (p)  --f M is inclusion, and 7rw : J-'(p)  + Ow is the canonical projection 
defined by (6). 

Our Lie group acting on the symplectic manifold M is the (abelian) torus K and 
obviously we always have Kw = K. Now we are.going to identify the orbit manifold 
Og as a projective manifold (the final result for all p is lemma 2, below). For generic p 
the manifold Ow will be (isomorphic to) a fixed complex manifold and the dependence on 
p will be displayed by the symplectic form S2, (see lemma 3). 

As a general reference for all the algebraic and complex geometry used further on, 
we propose [7]. If < = ( (0 ,  <I, . . . , <,J are coordinates in C"+'\{O), then we shall use < = [TO : <I : . . . : <,,I 
to denote the~projective coordinates on P. Thus we have a well-defined map 

(7) 

We denote by P the complex n-dimensional projective space. 

h : C"" + IF", h(<o. (1 , .  . . , cn) = [to : <I : . . . : ("1. 
The restriction of the map h to any sphere of radius R 

S$+' = [< E C"" : [<I2 = R2) 

is called the Hopf map, and will be denoted also by h. 

UCI) action on @"+I detined by 
We recall that the Hopf map coincides with the canonical projection associated to the 

(A, <) + A< A E ~U(1) ' < E SF'' for any R > 0 

(as in formula (4)). One can say that a Hopf map is the factorization by the flow of a 
harmonic oscillator of an isoenergetic surface. 

We denote by F the flag manifold 

P = [([(I, [VI)  E P2 x P2 : (7J = O}. (8) 

Obviously  we have two projections p~ and pz of F on the respective factors 

F c lP x $2. ~ ~~ 

Both p t  and pz define F as a projective bundle with base p and fibre P', e.g. 

P?([$I) = [hl E JP : t V  = 01 

is a projective line. 

[<I = [<o~: ( 1  : 521 by the formula 
We denote by ct the Fubini-Study Kahler form on p given in projective coordinates 

L 

Besides (the cohomology class of), a ~ i s  the positive generator of the group H 2 ( F ,  Z) G Z, 
and (the cohomology class of) the form ct2 generates H4@, Z). We denote 

WI = L * c q  0 2  = L*o12. (11) 
By functionality and the Lefshetz hyperplane section theorem (see [7]) (the cohomology 
classes of) 0 1 ,  02 generate H 2 @ ,  Z). 
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Lemma 1. The Chern classes of the complex manifold IF are as follows: 

I M Mladenov and V V Tsanov 

Cl(lF) = Z ( W l +  WZ) 

CZ(IF) = W: + 5 0 l W Z  + 0; 
C3(1F) = 3(U:0z + WlW:). 

Proof. By definition as a submanifold of Pz x Pz (see (8)), the manifold IF is a divisor of 
the line bundle V + Pz x Pz, for which 

c1 (V) = LYI + 012 

whence by (11) and functionality of Chern classes 

Cl(c;,) = @I + 02 .  (12) 

Also by (1 l), and functionality 

C("(Pz XP'),,) = 1 + ~ ( W I + W ~ ) + ~ ( W ~ ~ ~ W I W ~ ~ W ~ ) + ~ ( W ~ W ~ + W I W ~ ) .  

The tangent bundle "(IF) is obviously included in the following exact sequence 

0 + "(IF) 4 T(P x iP)lF + c;, + 0. (13) 

A standard computation with the Whitney sum formula 

(1 + Ci(F)  + + Cs@))(1 -k 01 + Y) = dT@' X PZ)i,) 

yields directly the result of the lemma 

Lemma 2. 
reduction theorem is 

(i) 0, = I F  
(ii) 0, = P2 
(iii) Pf l  = Pz 

and OP = 0 otherwise. 

Proof. 
using Hopf maps (see (7)) 

Let p = (pl ,  &) E k'. Then the orbit manifold 0, = J - ' ( p ) / K  given by the 

iff pl > 0 and pz > 0 
iff pl > 0 and /*z = 0 
iff p,, = 0 and pz > 0 

In all cases above the canonical projection x, : J- ' (p)  + 0, is constructed by 

h : S i + P  (14) 

First we treat case (i). Let p,, pz > 0. The isoenergetic surface J-'(p,)  is defined by 
where the radius R is determined by p (see below). 

the equation { q  = 0, as a submanifold of 

[({, 7) E M : 1{12 = p.1; 17# = pz] = s5 x s5. (15) 

The action (3) is the restriction of the direct product of the two Hopf U(1) actions from the 
manifold (15) to the submanifold k n Ss x Ss = J - I b ) .  Thus we have the direct product 
of two Hopf maps hl x h2 defining the canonical projection 

n, : J - l ( p )  + ofl = P ( p ) / K  = F 
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of the action (3), as described by the following diagram. 

hlxh2 
8' x S' A Pz x JP; hi x hZ(6, v) = (e, 7) 

U %L U 
~-l(b)---+ J-~(JL)/K=CD@=F. (16) 

Comparing formula (8), (15), and (16) we obtain the proof of case (i). 

projection 
To prove (ii) and (iii) we have only to notice that for example, in case (ii), the canonical 

nu : [ E  E MI : 1612 = p!) + P 
is just the Hopf map (see (6) and (14)). 

Remark. 
for generic p (case (i) of lemma 2). 

Proposition. 

Proof. 

There is another way to describe the manifold k and its submanifolds J-'(p.)  

If pI > 0, p2 > 0, then J-'(p) is diffeomorphic to SU(3)  

Let F : M + M be defined by 

For every /I = (pI. p ~ ) ,  such that p1 > 0, p~ > 0, the restriction 

F, = +(@) 

J-I (p )  i2 J-'(l, 1) = I([, 7J) E @3 x @3 : It12 = lvl2 = 1,(7J = 0). 

defines a diffeomorphism 

There is an obvious diffeomorphism 0 : J-l(l, 1) + SU(3) .  

Thus we obtain the desired diffeomorphism 

0, = 0 o Fp : J-I(p,) --t SU(3)  

which proves proposition 1. 

is probably best served by the following diagram 
For the following we have to describe explicitly the map iw for generic p, which purpose 

, X I  

s5 x 85 - c6 
Lemma 3. The reduced symplectic form on Op (determined by formula (6)) is given by 

(i) ap = pwl + AWZ on F 
(ii) C2, =pia on P 
(iii) a,' = pzci on P. 
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Proof. We shall use the notation and facts from the proof of the preceding lemma. We 
have in fact already described the maps xp, t p  ((16), (19)), determining the form Q, (see 
(6)). 

In order to prove lemma 3 we have to pull the Fubini-Study form (10) with a Hopf 
map (7) from P' back to a sphere 

I M Mladenov and V V Tsanov 

gg+l @fI+I. 

We just have to put l<l2 = R2 in formula (10) to find 

h*a = R-2t*C22. 

Thus using formulae (16), (19) and (20) we obtain case (if: 

X;(n,) = X;(PIwI + P Z d  = c;(n). 
The degenerate cases (ii) and (iii) follow readily from (20) and the description of x, in 

these cases at the end of the proof of lemma 2. The proof is completed. 
We now recall some relevant facts about geometric quantization of compact Kahler 

manifolds [3,8-111. Let X be a Kahler manifold with Kahler form 9. By definition a 
halomorphic line bundle L + X is a quantum bundle iff 

c l (L)=9- fc l (X) .  (21) 

A symplectic Kahler manifold possesses the canonical anti-holomorphic polarization. For 
our purposes this means that the quantum states are exactly the halomorphic sections of the 
quantum bundle L,  i.e. the quuntum Hilbert space associated to the classical phase space 
(X, 9)  is the Hilbert space (Ho(X, L) ,  (., .)) where 

(6, $) = j g(6, $)aa 6,  E H O ( X ,  L )  
X 

Here 

The Hermitian metric g on L is determined by the condition, that its associated exterior 
form h is the harmonic representative in the cohomology class (21). 

Thus a symplectic (Kahler) manifold (X, 9) is quantizable iff the above construction 
defines a genuine non-empty Hilbert space, which imposes the following conditions: 

(a) 9 - 4.1 (x) E H'(x, E); 
(b) The harmonic representative h is a positive form. 

We recall that, the curvature of the Hermitian metric g on the bundle L satisfies 

The space H o ( X ,  L )  with the scalar product given by g is the Hilbert space of quantum 
states associated to the symplectic manifold (X, 9). To a classical observable (i.e. a function 
f )  on the phase space, there corresponds a quantum operator 

S ( f )  E EndHo(X, L) S ( f ) s  = (-iV,y, t f ) s  
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where s E H o ( X ,  L) ,  and the vector field X, is defined by: 

r (X7)h  = -df. 

Theorem. To each pair of non-negative integers ( m l ,  mz) there corresponds exactly one 
admissible (quantum) value of the ‘observable’ p E k* (defined by formula (4)): 

(i) (PI, pz) = (ml + 1, mz + 1) 
(ii) (PI, 112) = (ml + $, 0) 
(iii) (PI, PZ) = (0, mz + $1 
The multiplicify h, of a given admissible p E k* ,  i.e. the dimension of the corresponding 

iff ml 2 0 and m2 2 0 
iff ml 2 0 and mz = 0 
iff ml = O  ind mz 2 0. 

quantum Hilbert space H, is given by the formula 

h, = dimHo(O,, L,) = 4(m1+ I)(mz + I ) (ml+ mz + 2) (22) 

where ml , mz are the numbers specified above. 

Remark. 
multiplicities which would occur if the two oscillators were not interacting. 

Proof. Let p = (fil, pz) be an admissible value. We treat first the generic case p1 > 0, 
pz > 0. By formula (21), the differential form 

One could notice that the multiplicities (22) are substantially different from the 

. .~ 

Cl(L,) = a, - +I(!?) = (PI - 1)Ol + (PZ - 1)Oz E ,H2(@, a 
whence 

p ~ - l = m l  p z - I = m z ~ Z  mI>O,mz>O. 

This settles the generic case. 

(ii). 

MI: 

Of the degenerate cases (ii), (iii) we shall perform the computations in only one, say 

When pz = ~ O ,  then p1 > 0, and the classical phase space is the symplectic manifold 

C ]  (L,)  = ap - fCl(P’) = (p1 - $)a E HZ(P2, Z) 

f i 1 - Z = m 1 e z  m1>0 

whence 

p l = m l + 5  3 m l = 0 , 1 , 2  ,.... 

The computation of the multiplicities h, (formula (22) is, of course, just the computation 
of the (well-known) dimensions of the irreducible representations of SU(3) ,  or via the 
Borel-Weil-Bott theorem [12], the computation of the dimensions  of^ the corresponding 
cohomology spaces. For completeness of the exposition of our quantization procedure we 
include this computation applying the Riemann-Roch theorem. 

We treat first the generic case when pl > 0, pz > 0. In the chain of equalities that 
follow, the first is a consequence of the positiveness of the bundle L, and the Kodaira 
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vanishing theorem ([7], ch 1); the second equality is the Riemann-Roch theorem; the third 
equality is an application of lemma 1 above, the substitution 

f = mlwl+ mzuz = CI(L,) 

I M Mladenov and V V Tsanov 

and a straightforward computation. For the definition and properties of the Euler 
characteristic x( . )  and the Chern character ch(.) of a holomorphic bundle and the Todd 
class td(.) of a manifold, we refer to [7]. 

h,  = ,y(L,) = (ch(L,)td(F), P)ch(L,)td(F) = (1 + f + kfz + if3} 
x (1 + C l ( W  + $ c m  + CZ(F)) + &Cl(JF)CZ”) 

= +clmcz(F) + tf(c:(P) + CZ(W + y c l ( F )  + i f 3  
= +(o:o2 + wlw;) + h[(13m1 + 5mz)w:wz + (5ml+ 13mz)ulw:)1 

+ 4 [(m:+~mlmz)o:wz+(~mimz+m:)olw;~ + 4 (m:mzo:wz +ml m;ol U;). 

Integrating the above expression over the manifold P 

(ch(L,)td(lF), P) = 1 + ;(ml+ mz) + (m: + 4mlmz + m?) + ;mlmz(ml+ m2) 

= + 1)(mz + I)(ml +mZ + 2) (23) 

we obtain the desired result. 
To complete the proof of the theorem, one must treat the degenerate cases (ii), (iii), 

when pl = 0 or p z  = 0, whence 0, Z P’, in a similar way. Formula (23) still holds 
when pl  or p z  vanishes. One can expect this, keeping in mind that the corresponding 
representations of SU(3)  are aheady contained in the cohomology of IF (see the remark 
below). Our theorem is proved. 

Remark (continued): 
represented in formula (17) by 

The torus K identifies with a maximal torus of the group SU(3) as 

It is well known [U]  that the flag manifold F may be represented as follows: 

iF = SL(3, C)/B Z SU(3)/K (25) 

where B is a Bore1 subgroup of SL(3, C) (e.g. the upper triangular unimodular matrices). 
Using the diffeomorphisms 0, defined in the previous Remark (formula (18)) we can 

spread the left action of the torus K on SU(3) to all manifolds J-’(p)  with p , ,  pz  > 0. 
Thus we have 

which defines a free action of the torus K on the symplectic manifold M by acting separately 
on each summand of (26). A straightforward check shows that this action coincides with 
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the action defined by formula (3). In our approach to the reduction where the value of 
the momentum map (Hamiltonian) determines the reduced symplectic form and the class 
of (admissible) symplectic forms determined by the quantization conditions coincides with 
the class of (Chern classes of) positive holomotphic line bundles on F. The present remark 
makes it clear that our method of quantization gives a direct identification of this class 
with the class of positive weights in the Cartan algebra k (as it should by the Borel-Weil- 
Bott theorem). We should mention also that the result of our paper [I], where a classical 
dynamical system is quantized, could be interpreted as treatment of the group SO(4) in the 
present context. All compact semisimple Lie groups may be treated in a similar way. 

We should remark that quantization of the flag manifolds has been treated recently by 
different approaches and for different reasons by several authors 113-151. It is beyond the 
scope of the present paper to discuss the relations between these results. 
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